Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 21(1): 6, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212833

RESUMO

BACKGROUND: The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS: We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS: We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS: We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.


Assuntos
Epilepsia , Espaço Extracelular , Ratos , Animais , Espaço Extracelular/metabolismo , Uretana/metabolismo , Convulsões/induzido quimicamente , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Epilepsia/patologia , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Amidas/metabolismo , Hipocampo/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003223

RESUMO

For several histone lysine methyltransferases (HKMTs), RNA binding has been already shown to be a functionally relevant feature, but detailed information on the RNA interactome of these proteins is not always known. Of the six human KMT2 proteins responsible for the methylation of the H3K4 residue, two-SETD1A and SETD1B-contain RNA recognition domains (RRMs). Here we investigated the RNA binding capacity of SETD1A and identified a broad range of interacting RNAs within HEK293T cells. Our analysis revealed that similar to yeast Set1, SETD1A is also capable of binding several coding and non-coding RNAs, including RNA species related to RNA processing. We also show direct RNA binding activity of the individual RRM domain in vitro, which is in contrast with the RRM domain found in yeast Set1. Structural modeling revealed important details on the possible RNA recognition mode of SETD1A and highlighted some fundamental differences between SETD1A and Set1, explaining the differences in the RNA binding capacity of their respective RRMs.


Assuntos
RNA , Proteínas de Saccharomyces cerevisiae , Humanos , Células HEK293 , Metilação , RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686208

RESUMO

The aggregation and amyloid formation of α-synuclein is associated with Parkinson's disease and other synucleinopathies. In its native, monomeric form α-synuclein is an intrinsically disordered protein represented by highly dynamic conformational ensembles. Inhibition of α-synuclein aggregation using small molecules, peptides, or proteins has been at the center of interest in recent years. Our aim was to explore the effects of cross-linking on the structure and aggregation/amyloid formation properties of α-synuclein. Comparative analysis of available high-resolution amyloid structures and representative structural models and MD trajectory of monomeric α-synuclein revealed that potential cross-links in the monomeric protein are mostly incompatible with the amyloid forms and thus might inhibit fibrillation. Monomeric α-synuclein has been intramolecularly chemically cross-linked under various conditions using different cross-linkers. We determined the location of cross-links and their frequency using mass spectrometry and found that most of them cannot be realized in the amyloid structures. The inhibitory potential of cross-linked proteins has been experimentally investigated using various methods, including thioflavin-T fluorescence and transmission electron microscopy. We found that conformational constraints applied by cross-linking fully blocked α-synuclein amyloid formation. Moreover, DTSSP-cross-linked molecules exhibited an inhibitory effect on the aggregation of unmodified α-synuclein as well.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína , Proteínas Amiloidogênicas , Doença de Parkinson/tratamento farmacológico , Reagentes de Ligações Cruzadas/farmacologia
4.
Chem Sci ; 14(35): 9293-9305, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712013

RESUMO

The underlying causes of Alzheimer's disease (AD) remain a mystery, with multiple pathological components, including oxidative stress, acetylcholinesterase, amyloid-ß, and metal ions, all playing a role. Here we report a strategic approach to designing flavonoids that can effectively tackle multiple pathological elements involved in AD. Our systematic investigations revealed key structural features for flavonoids to simultaneously target and regulate pathogenic targets. Our findings led to the development of a highly promising flavonoid that exhibits a range of functions, based on a complete structure-activity relationship analysis. Furthermore, our mechanistic studies confirmed that this flavonoid's versatile reactivities are driven by its redox potential and direct interactions with pathogenic factors. This work highlights the potential of multi-target-directed flavonoids as a novel solution in the fight against AD.

5.
Nanoscale ; 15(21): 9315-9328, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158478

RESUMO

Amyloid generation plays essential roles in various human diseases, biological functions, and nanotechnology. However, developing efficient chemical and biological candidates for regulating amyloid fibrillation remains difficult because information on the molecular actions of modulators is insufficient. Thus, studies are needed to understand how the intermolecular physicochemical properties of the synthesised molecules and amyloid precursors influence amyloidogenesis. In this study, we synthesised a novel amphiphilic sub-nanosized material, arginine-arginine (RR)-bile acid (BA), by conjugating positively charged RR to hydrophobic BA. The effects of RR-BA on amyloid formation were investigated on α-synuclein (αSN) in Parkinson's disease and on K18 and amyloid-ß (1-42) (Aß42) in Alzheimer's disease. RR-BA showed no appreciable effect on the kinetics of K18 and Aß42 amyloid fibrillation because of their weak and non-specific interactions. However, RR-BA specifically bound to αSN with moderate binding affinity through electrostatic interactions between the positively charged RR and the negatively charged cluster in the C-terminus of αSN. In addition, hydrophobic BA in the αSN-RR-BA complex transiently condensed αSN for primary nucleation, thereby accelerating αSN amyloid fibrillation. We propose an electrostatic binding and hydrophobic condensation model of RR-BA-driven amyloid formation of αSN, which will contribute to the rational design and development of molecules for controlling amyloid aggregation in diverse fields.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Amiloide/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides
6.
Mol Neurobiol ; 60(6): 3158-3174, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36808604

RESUMO

Declining cerebral blood flow leads to chronic cerebral hypoperfusion which can induce neurodegenerative disorders, such as vascular dementia. The reduced energy supply of the brain impairs mitochondrial functions that could trigger further damaging cellular processes. We carried out stepwise bilateral common carotid occlusions on rats and investigated long-term mitochondrial, mitochondria-associated membrane (MAM), and cerebrospinal fluid (CSF) proteome changes. Samples were studied by gel-based and mass spectrometry-based proteomic analyses. We found 19, 35, and 12 significantly altered proteins in the mitochondria, MAM, and CSF, respectively. Most of the changed proteins were involved in protein turnover and import in all three sample types. We confirmed decreased levels of proteins involved in protein folding and amino acid catabolism, such as P4hb and Hibadh in the mitochondria by western blot. We detected reduced levels of several components of protein synthesis and degradation in the CSF as well as in the subcellular fractions, implying that hypoperfusion-induced altered protein turnover of brain tissue can be detected in the CSF by proteomic analysis.


Assuntos
Isquemia Encefálica , Proteômica , Ratos , Animais , Proteostase , Mitocôndrias/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo
7.
Brain Behav Immun Health ; 28: 100594, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36713475

RESUMO

Neuroinflammation induced by peripheral infections leads to various neuropsychiatric symptoms both in humans and laboratory animals, e.g., to the manifestation of sickness behavior that resembles some features of clinical depression. However, in addition to depression-like behavior, there are other symptoms of acute systemic inflammation that can be associated with the impairment of prefrontal cortex (PFC)-regulated cognitive functions. Thus, we investigated the electrophysiological and proteomic alterations of the PFC using brain slices and the lipopolysaccharide (LPS) model of acute peripheral infection in male mice. Based on the gene expression differences of the coreceptor (Il1rap) of interleukin-1 beta (IL-1ß) between neuron types in our previous single-cell sequencing dataset, we first compared the electrophysiological effects of IL-1ß on PFC pyramidal cells and interneurons. We found that pyramidal cells are more responsive to IL-1ß, as could be presumed from our transcriptomic data. To examine the possible circuit-level correlates of the cellular changes, frontal electroencephalographic (EEG) activity and fronto-occipital functional connectivity were analyzed in LPS-treated mice and significant changes were found in the fronto-occipital EEG correlation and coherence in the delta and high-gamma frequency bands. The upregulation of the prefrontal IL-1 system (IL-1ß and its receptor) after LPS treatment was revealed by immunoassays simultaneously with the observed EEG changes. Furthermore, we investigated the LPS-induced alterations of the synaptic proteome in the PFC using 2-D differential gel electrophoresis and mass spectrometry and found 48 altered proteins mainly related to cellular signaling, cytoskeletal organization, and carbohydrate/energy metabolism. Thus, our results indicate remarkable electrophysiological and molecular changes in the PFC related to acute systemic inflammation that may explain some of the concomitant behavioral and physiological symptoms.

8.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232642

RESUMO

Human ileal bile acid-binding protein (hI-BABP) has a key role in the enterohepatic circulation of bile salts. Its two internal binding sites exhibit positive cooperativity accompanied by a site-selectivity of glycocholate (GCA) and glycochenodeoxycholate (GCDA), the two most abundant bile salts in humans. To improve our understanding of the role of dynamics in ligand binding, we introduced functionally impairing single-residue mutations at two key regions of the protein and subjected the mutants to NMR relaxation analysis and MD simulations. According to our results, mutation in both the vicinity of the C/D (Q51A) and the G/H (Q99A) turns results in a redistribution of motional freedom in apo hI-BABP. Mutation Q51A, deteriorating the site-selectivity of GCA and GCDA, results in the channeling of ms fluctuations into faster motions in the binding pocket hampering the realization of key side chain interactions. Mutation Q99A, abolishing positive binding cooperativity for GCDA, leaves ms motions in the C-terminal half unchanged but by decoupling ßD from a dynamic cluster of the N-terminal half displays an increased flexibility in the vicinity of site 1. MD simulations of the variants indicate structural differences in the portal region and mutation-induced changes in dynamics, which depend on the protonation state of histidines. A dynamic coupling between the EFGH portal, the C/D-region, and the helical cap is evidenced highlighting the interplay of structural and dynamic effects in bile salt recognition in hI-BABP.


Assuntos
Ácido Glicoquenodesoxicólico , Ácido Glicocólico , Ácidos e Sais Biliares , Proteínas de Transporte , Ácido Glicoquenodesoxicólico/química , Ácido Glicocólico/química , Humanos , Ligantes , Glicoproteínas de Membrana , Mutação
9.
Sci Rep ; 12(1): 15623, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114230

RESUMO

Dynein light chain LC8 is a small dimeric hub protein that recognizes its partners through short linear motifs and is commonly assumed to drive their dimerization. It has more than 100 known binding partners involved in a wide range of cellular processes. Recent large-scale interaction studies suggested that LC8 could also play a role in the ciliary/centrosome system. However, the cellular function of LC8 in this system remains elusive. In this work, we characterized the interaction of LC8 with the centrosomal protein lebercilin (LCA5), which is associated with a specific form of ciliopathy. We showed that LCA5 binds LC8 through two linear motifs. In contrast to the commonly accepted model, LCA5 forms dimers through extensive coiled coil formation in a LC8-independent manner. However, LC8 enhances the oligomerization ability of LCA5 that requires a finely balanced interplay of coiled coil segments and both binding motifs. Based on our results, we propose that LC8 acts as an oligomerization engine that is responsible for the higher order oligomer formation of LCA5. As LCA5 shares several common features with other centrosomal proteins, the presented LC8 driven oligomerization could be widespread among centrosomal proteins, highlighting an important novel cellular function of LC8.


Assuntos
Centrossomo , Dineínas , Centrossomo/metabolismo , Dimerização , Dineínas/metabolismo , Ligação Proteica
10.
Cell Mol Life Sci ; 79(9): 471, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35932293

RESUMO

In synapses that show signs of local apoptosis and mitochondrial stress and undergo neuro-immunological synapse pruning, an increase in the levels of the presynaptic protein, neuronal-specific septin-3 can be observed. Septin-3 is a member of the septin GTPase family with the ability to form multimers and contribute to the cytoskeleton. However, the function of septin-3 remains elusive. Here, we provide evidence that septin-3 is capable of binding the most-studied autophagy protein Atg8 homolog microtubule-associated protein 1 light chain 3B (LC3B), besides another homolog, GABA receptor-associated protein-like 2 (GABARAPL2). Moreover, we demonstrate that colocalization of septin-3 and LC3B increases upon chemical autophagy induction in primary neuronal cells. Septin-3 is accumulated in primary neurons upon autophagy enhancement or blockade, similar to autophagy proteins. Using electron microscopy, we also show that septin-3 localizes to LC3B positive membranes and can be found at mitochondria. However, colocalization results of septin-3 and the early mitophagy marker PTEN-induced kinase 1 (PINK1) do not support that binding of septin-3 to mitochondria is mitophagy related. We conclude that septin-3 correlates with synaptic/neuronal autophagy, binds Atg8 and localizes to autophagic membranes that can be enhanced with chemical autophagy induction. Based on our results, elevated septin-3 levels might indicate enhanced or impeded autophagy in neurons.


Assuntos
Autofagossomos , Septinas , Autofagossomos/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia , Neurônios/metabolismo , Septinas/metabolismo
11.
Anal Chem ; 94(31): 10949-10958, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35877130

RESUMO

PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation) is the presented nuclear magnetic resonance (NMR) approach to identify at once the location of proteins' exposed surface, hindered accessibility, and exchange processes occurring on a µs-ms time scale. In addition to mapping the protein surface accessibility, the application of this method under specific conditions makes it possible to distinguish conformational mobility and chemical exchange processes, thereby providing an alternative to characterization by more demanding techniques (transverse relaxation dispersion, saturation transfer, and high-pressure NMR). Moreover, its high sensitivity enables studying samples at low, physiologically more relevant concentrations. Association, dynamics, and oligomerization are addressed by PENELOP for a component of SARS-CoV-2 replication transcription complex and an amyloidogenic protein.


Assuntos
COVID-19 , Agregados Proteicos , Humanos , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , SARS-CoV-2
12.
J Biol Chem ; 298(7): 102113, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35690144

RESUMO

Complement component C1q is a protein complex of the innate immune system with well-characterized binding partners that constitutes part of the classical complement pathway. In addition, C1q was recently described in the central nervous system as having a role in synapse elimination both in the healthy brain and in neurodegenerative diseases. However, the molecular mechanism of C1q-associated synapse phagocytosis is still unclear. Here, we designed monomer and multimer protein constructs, which comprised the globular interaction recognition parts of mouse C1q (globular part of C1q [gC1q]) as single-chain molecules (sc-gC1q proteins) lacking the collagen-like effector region. These molecules, which can competitively inhibit the function of C1q, were expressed in an Escherichia coli expression system, and their structure and capabilities to bind known complement pathway activators were validated by mass spectrometry, analytical size-exclusion chromatography, analytical ultracentrifugation, CD spectroscopy, and ELISA. We further characterized the interactions between these molecules and immunoglobulins and neuronal pentraxins using surface plasmon resonance spectroscopy. We demonstrated that sc-gC1qs potently inhibited the function of C1q. Furthermore, these sc-gC1qs competed with C1q in binding to the embryonal neuronal cell membrane. We conclude that the application of sc-gC1qs can reveal neuronal localization and functions of C1q in assays in vivo and might serve as a basis for engineering inhibitors for therapeutic purposes.


Assuntos
Complemento C1q , Via Clássica do Complemento , Animais , Ensaio de Imunoadsorção Enzimática , Camundongos
13.
Nucleic Acids Res ; 50(W1): W90-W98, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35544232

RESUMO

Circular dichroism (CD) spectroscopy is widely used to characterize the secondary structure composition of proteins. To derive accurate and detailed structural information from the CD spectra, we have developed the Beta Structure Selection (BeStSel) method (PNAS, 112, E3095), which can handle the spectral diversity of ß-structured proteins. The BeStSel webserver provides this method with useful accessories to the community with the main goal to analyze single or multiple protein CD spectra. Uniquely, BeStSel provides information on eight secondary structure components including parallel ß-structure and antiparallel ß-sheets with three different groups of twist. It overperforms any available method in accuracy and information content, moreover, it is capable of predicting the protein fold down to the topology/homology level of the CATH classification. A new module of the webserver helps to distinguish intrinsically disordered proteins by their CD spectrum. Secondary structure calculation for uploaded PDB files will help the experimental verification of protein MD and in silico modelling using CD spectroscopy. The server also calculates extinction coefficients from the primary sequence for CD users to determine the accurate protein concentrations which is a prerequisite for reliable secondary structure determination. The BeStSel server can be freely accessed at https://bestsel.elte.hu.


Assuntos
Proteínas Intrinsicamente Desordenadas , Estrutura Secundária de Proteína , Simulação por Computador , Análise Espectral , Dicroísmo Circular
14.
Front Mol Biosci ; 9: 863141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35591946

RESUMO

Intrinsically disordered proteins lack a stable tertiary structure and form dynamic conformational ensembles due to their characteristic physicochemical properties and amino acid composition. They are abundant in nature and responsible for a large variety of cellular functions. While numerous bioinformatics tools have been developed for in silico disorder prediction in the last decades, there is a need for experimental methods to verify the disordered state. CD spectroscopy is widely used for protein secondary structure analysis. It is usable in a wide concentration range under various buffer conditions. Even without providing high-resolution information, it is especially useful when NMR, X-ray, or other techniques are problematic or one simply needs a fast technique to verify the structure of proteins. Here, we propose an automatized binary disorder-order classification method by analyzing far-UV CD spectroscopy data. The method needs CD data at only three wavelength points, making high-throughput data collection possible. The mathematical analysis applies the k-nearest neighbor algorithm with cosine distance function, which is independent of the spectral amplitude and thus free of concentration determination errors. Moreover, the method can be used even for strong absorbing samples, such as the case of crowded environmental conditions, if the spectrum can be recorded down to the wavelength of 212 nm. We believe the classification method will be useful in identifying disorder and will also facilitate the growth of experimental data in IDP databases. The method is implemented on a webserver and freely available for academic users.

15.
Biology (Basel) ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34827190

RESUMO

ß2-microglobulin (ß2m), the light chain of the MHC-I complex, is associated with dialysis-related amyloidosis (DRA). Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N ß2m variant, which showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Here, we investigated the role of the D76N mutation in the amyloid formation of ß2m by point mutations affecting the Asp76-Lys41 ion-pair of WT ß2m and the charge cluster on Asp38. Using a variety of biophysical techniques, we investigated the conformational stability and partial unfolding of the native state of the variants, as well as their amyloidogenic propensity and the stability of amyloid fibrils under various conditions. Furthermore, we studied the intermolecular interactions of WT and mutant proteins with various binding partners that might have in vivo relevance. We found that, relative to WT ß2m, the exceptional amyloidogenicity of the pathogenic D76N ß2m variant is realized by the deleterious synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules (e.g., lipids) and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular components, including extracellular matrix proteins.

16.
Front Immunol ; 12: 749433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759929

RESUMO

The investigation of the molecular background of direct communication of neurons and immune cells in the brain is an important issue for understanding physiological and pathological processes in the nervous system. Direct contacts between brain-infiltrating immune cells and neurons, and the neuromodulatory effect of immune cell-derived regulatory peptides are well established. Several aspects of the role of immune and glial cells in the direct neuro-immune communication are also well known; however, there remain many questions regarding the molecular details of signaling from neurons to immune cells. Thus, we report here on the neuronal expression of genes encoding antimicrobial and immunomodulatory peptides, as well as proteins of immune cell-specific activation and communication mechanisms. In the present study, we analyzed the single-cell sequencing data of our previous transcriptomic work, obtained from electrophysiologically identified pyramidal cells and interneurons of the murine prefrontal cortex. We filtered out the genes that may be associated with the direct communication between immune cells and neurons and examined their expression pattern in the neuronal transcriptome. The expression of some of these genes by cortical neurons has not yet been reported. The vast majority of antimicrobial (~53%) and immune cell protein (~94%) transcripts was identified in the transcriptome of the 84 cells, owing to the high sensitivity of ultra-deep sequencing. Several of the antimicrobial and immune process-related protein transcripts showed cell type-specific or enriched expression. Individual neurons transcribed only a fraction of the investigated genes with low copy numbers probably due to the bursting kinetics of gene expression; however, the comparison of our data with available transcriptomic datasets from immune cells and neurons suggests the functional relevance of the reported findings. Accordingly, we propose further experimental and in silico studies on the neuronal expression of immune system-related genes and the potential role of the encoded proteins in neuroimmunological processes.


Assuntos
Córtex Pré-Frontal/imunologia , Células Piramidais/imunologia , Animais , Apresentação de Antígeno/genética , Peptídeos Antimicrobianos/genética , Linfócitos B/imunologia , Masculino , Camundongos Endogâmicos C57BL , Análise de Célula Única , Linfócitos T/imunologia , Transcriptoma
17.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201246

RESUMO

Disordered plant chaperones play key roles in helping plants survive in harsh conditions, and they are indispensable for seeds to remain viable. Aside from well-known and thoroughly characterized globular chaperone proteins, there are a number of intrinsically disordered proteins (IDPs) that can also serve as highly effective protecting agents in the cells. One of the largest groups of disordered chaperones is the group of dehydrins, proteins that are expressed at high levels under different abiotic stress conditions, such as drought, high temperature, or osmotic stress. Dehydrins are characterized by the presence of different conserved sequence motifs that also serve as the basis for their categorization. Despite their accepted importance, the exact role and relevance of the conserved regions have not yet been formally addressed. Here, we explored the involvement of each conserved segment in the protective function of the intrinsically disordered stress protein (IDSP) A. thaliana's Early Response to Dehydration (ERD14). We show that segments that are directly involved in partner binding, and others that are not, are equally necessary for proper function and that cellular protection emerges from the balanced interplay of different regions of ERD14.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Intrinsicamente Desordenadas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Intrinsicamente Desordenadas/genética , Chaperonas Moleculares/genética , Pressão Osmótica , Proteínas de Plantas/genética
18.
J Biol Chem ; 297(1): 100716, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930467

RESUMO

The lesser-known unconventional myosin 16 protein is essential in proper neuronal functioning and has been implicated in cell cycle regulation. Its longer Myo16b isoform contains a C-terminal tail extension (Myo16Tail), which has been shown to play a role in the neuronal phosphoinositide 3-kinase signaling pathway. Myo16Tail mediates the actin cytoskeleton remodeling, downregulates the actin dynamics at the postsynaptic site of dendritic spines, and is involved in the organization of the presynaptic axon terminals. However, the functional and structural features of this C-terminal tail extension are not well known. Here, we report the purification and biophysical characterization of the Myo16Tail by bioinformatics, fluorescence spectroscopy, and CD. Our results revealed that the Myo16Tail is functionally active and interacts with the N-terminal ankyrin domain of myosin 16, suggesting an intramolecular binding between the C and N termini of Myo16 as an autoregulatory mechanism involving backfolding of the motor domain. In addition, the Myo16Tail possesses high structural flexibility and a solvent-exposed hydrophobic core, indicating the largely unstructured, intrinsically disordered nature of this protein region. Some secondary structure elements were also observed, indicating that the Myo16Tail likely adopts a molten globule-like structure. These structural features imply that the Myo16Tail may function as a flexible display site particularly relevant in post-translational modifications, regulatory functions such as backfolding, and phosphoinositide 3-kinase signaling.


Assuntos
Anquirinas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Miosinas/química , Miosinas/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Ratos , Espectrometria de Fluorescência , Triptofano/metabolismo
19.
Commun Biol ; 4(1): 120, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500517

RESUMO

The thermodynamic hypothesis of protein folding, known as the "Anfinsen's dogma" states that the native structure of a protein represents a free energy minimum determined by the amino acid sequence. However, inconsistent with the Anfinsen's dogma, globular proteins can misfold to form amyloid fibrils, which are ordered aggregates associated with diseases such as Alzheimer's and Parkinson's diseases. Here, we present a general concept for the link between folding and misfolding. We tested the accessibility of the amyloid state for various proteins upon heating and agitation. Many of them showed Anfinsen-like reversible unfolding upon heating, but formed amyloid fibrils upon agitation at high temperatures. We show that folding and amyloid formation are separated by the supersaturation barrier of a protein. Its breakdown is required to shift the protein to the amyloid pathway. Thus, the breakdown of supersaturation links the Anfinsen's intramolecular folding universe and the intermolecular misfolding universe.


Assuntos
Amiloide/química , Amiloide/metabolismo , Dobramento de Proteína , Sequência de Aminoácidos/fisiologia , Amiloidose/etiologia , Amiloidose/metabolismo , Precipitação Química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Concentração Osmolar , Agregação Patológica de Proteínas/etiologia , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Multimerização Proteica/fisiologia , Termodinâmica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
20.
Methods Mol Biol ; 2199: 175-189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33125651

RESUMO

Far-UV circular dichroism (CD) spectroscopy is a classical method for the study of the secondary structure of polypeptides in solution. It has been the general view that the α-helix content can be estimated accurately from the CD spectra. However, the technique was less reliable to estimate the ß-sheet contents as a consequence of the structural variety of the ß-sheets, which is reflected in a large spectral diversity of the CD spectra of proteins containing this secondary structure component. By taking into account the parallel or antiparallel orientation and the twist of the ß-sheets, the Beta Structure Selection (BeStSel) method provides an improved ß-structure determination and its performance is more accurate for any of the secondary structure types compared to previous CD spectrum analysis algorithms. Moreover, BeStSel provides extra information on the orientation and twist of the ß-sheets which is sufficient for the prediction of the protein fold.The advantage of CD spectroscopy is that it is a fast and inexpensive technique with easy data processing which can be used in a wide protein concentration range and under various buffer conditions. It is especially useful when the atomic resolution structure is not available, such as the case of protein aggregates, membrane proteins or natively disordered chains, for studying conformational transitions, testing the effect of the environmental conditions on the protein structure, for verifying the correct fold of recombinant proteins in every scientific fields working on proteins from basic protein science to biotechnology and pharmaceutical industry. Here, we provide a brief step-by-step guide to record the CD spectra of proteins and their analysis with the BeStSel method.


Assuntos
Algoritmos , Peptídeos/química , Dobramento de Proteína , Dicroísmo Circular , Conformação Proteica em Folha beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...